
 Recursion

 341

Chapter 9. Recursion
“Well, you sure picked a good subject this time,” said

Morf, looking a bit puzzled.

“We touched on this before, don’t you remember?”
replied Logy. “You remember, recursion is when a procedure
uses itself as part of the solution.”

“Say what?”

Yes, strange as that may seem, a
recursive procedure is one that calls itself
as part of the total solution. You saw
examples of this in earlier chapters.

 It is something like the two turtles in
the picture. Each turtle is using the other
to draw itself.

__

Is Life Recursive
Here’s a fun procedure to help you make some sense out

of recursion, even though it really isn’t Logo.

TO GET.THROUGH.LIFE
GET.THROUGH.TODAY
GET.THROUGH.LIFE
END

Think about it for a moment. This says that to get through
life, you have to get through today. Once you are through
today, you have to move on, right?

But where?

Recursion

342

You can't go backward. You can't stop time. You have
to get through life. But to get through life, you have to get
through today. Each day is different. So while this may look
like a simple loop, it really isn't. Have you ever repeated a
day, doing exactly what you did yesterday?

Let's add another twist to this. Let's suppose that when
you're standing in front of the Pearly Gates to Heaven, you are
asked to take a look at your Book of Life.

Embedded recursion can actually help you with this task.
We talk about different types of recursion in the next section.
Anyway, to see your Book of Life, all you have to do is add a
couple of lines to your life procedure.

TO GET.THROUGH.LIFE
IF LIFE = "OVER [STOP]
GET.THROUGH.TODAY
GET.THROUGH.LIFE
PRINT BOOK.OF.LIFE
END

It's like every time you GET.THROUGH.TODAY, you
write a page in your Book of Life. Only the pages are not
printed until LIFE = "OVER. When the procedure stops, all
the pages are printed starting with the last page it saved.

This may seem very confusing right now. But it will begin
to make sense very shortly.

 Recursion

 343

Tail-end Recursion
Yes, recursion is confusing.

It reminds you of the images you see when you look in
two mirrors — without Morf getting in the way, that is. So
let’s try it with something we know something about.

TO MAZE :N
FD :N RT 90
MAZE :N + 5
END

This is an example of what you call “tail-end recursion.”
The recursive call is at the tail-end of the procedure.

To see just how this works, type

MAZE 20

Now watch what happens.

The turtle goes forward 20 steps and then turns right 90
turns. Then the procedure tells :N (that's 20 to us) to become
:N + 5 (that's 25 to us now). Then the procedure says

MAZE 25

Recursion

344

and starts all over again.

MAZE 25 becomes MAZE 30. MAZE 30 become MAZE
35, and on and on and on. The screen soon looks something
like what you see below. And it just keeps on going, gradually
filling up the screen.

Of course, we can put a STOP in there if we want.

TO MAZE :N
IF :N = 200 [STOP]
FD :N RT 90
MAZE :N + 5
END

The first line sets up a conditional test. Each time the
procedure runs, it tests :N to see if it equals 200. When :N
does equal 200, the procedure stops.

__

 Recursion

 345

The Turtle’s
Erector Set

Let’s take a look at some other examples

Did you ever play with an Erector Set? Did you ever build
bridges? Maybe some buildings?

Well, Logo can help you draw your plans.

TO ERECTORSET :N :X
IF :X = 0 [STOP]
SECTION :N
MOVE :N
ERECTORSET :N :X - 1
END

TO SECTION :N
REPEAT 4 [TRI :N FD :N RT 90]
END

TO MOVE :N
RT 90 FD :N LT 90
END

TO TRI :N
FD :N RT 135
FD :N / SQRT 2 RT 90
FD :N / SQRT 2 RT 135
END

Recursion

346

Uh, oh!

__

The Italian
Turtle

Do you like Italian food? How about spaghetti?

TO SPAGHETTI
CIRCLE 5
CIRCLE 4
CIRCLE 3
CIRCLE 2
RT 45
SPAGHETTI
END

TO CIRCLE :N
REPEAT 36 [FD :N RT 10]
END

You can make the SPAGHETTI procedure even more
variable with a few changes:

TO SPAGHETTI :N
CIRCLE :N + 5
CIRCLE :N + 4
CIRCLE :N + 3

 Recursion

 347

CIRCLE :N + 2
RT 45
SPAGHETTI :N
END

How about this one?

TO SPAGHETTI :N
CIRCLE :N
IF :N = 0 [STOP]
RT 45
SPAGHETTI :N - 1
END

This recursive procedure is like some others you have
used before. Will it draw spaghetti like the other procedures
above? Why? Better yet, why not?

What about this one?

TO SPAGHETTI :N
IF :N > 200 [STOP]
CIRCLE :N
RT 45
SPAGHETTI :N + 5
END

In addition to spaghetti drawings, what else can you do
with this circle procedure?

TO CIRCLE :N
REPEAT 36 [FD :N RT 10]
END

__

Recursion

348

How About a
Slinky?

TO SLINKY
LT 90
CIRCLES
END

TO CIRCLES
CIRCLE 5
FD 20
CIRCLES
END

You might think that recursion is just like a loop, that it
just goes around in circles. Well, not quite! Sometimes things
aren’t what they seem to be.

__

Embedded Recursion
To check this out, let’s look at a procedure that uses

“embedded recursion.” The recursive call is embedded in the
middle of the procedure somewhere, like in the
GET.THROUGH.LIFE procedure.

TO TEST.RECURSION :N
PRINT [IS THIS RECURSION?]
IF READWORD = "YES [TEST.RECURSION :N + 1]
PRINT :N
END

In the TEST.RECURSION procedure, the variable :N is
used as a counter. It is used to keep track of your answers to
the question, IS THIS RECURSION?

Watch and see. Type

 Recursion

 349

TEST.RECURSION 1

When you start the procedure, the first thing you see on
the screen is the question:

IS THIS RECURSION?

READWORD tells Logo to stop and wait for you to type
an answer, which it then reads. Type YES. The counter knows
that this is your first answer.

Then we come to a test. If the word you typed was YES,
then the procedure calls itself. What happens?

You guessed it! There’s that question again.

IS THIS RECURSION?

Type YES a few times when you see
the question. Then type NO. What
happens this time?

When you type NO, the procedure
comes to the test. This time the word you
typed doesn’t match YES and so the
computer reads the next line:

PRINT :N

WOW, what happened then?

Why were so many numbers printed? That’s what makes
recursion different from just a simple loop.

Is this what recursion does to you?

Recursion

350

When you first look at this procedure, it seems as if it is
going to go around in a loop. Every time it passes the
TEST.RECURSION :N + 1 line, the counter is going to add
1. Then, when you type NO instead of YES, you’d think the
procedure would simply print the current value of N.

Well, that isn’t the way recursion works. Morf has one
of his rabbit trails to show you what happens.

__

Rabbit Trail 22. Recursive Pages
Let’s look at this procedure again. You’ll need some

blank paper, a pencil, and scissors for this one.

Fold the paper in half. Then fold it in half again. And
again. Then one last time. Crease the edges nice and sharp
and then open up your piece of paper.

Cut the paper along the folds. You should end up with 16
small pieces of paper. Now number these “pages” from 1 to
16 by writing a small number at the bottom of the page.

Get your pencil ready and then type

TEST.RECURSION 1

First, you see the question, IS THIS RECURSION?, on
the screen. So write a big 1 on your first piece of paper and
put that piece off by itself.

Type YES. What happens?

The question appears on the screen and :N becomes :N +
1 — or 2. Write 2 on your second piece of paper and put that
on the pile with your first piece, the one with the 1 on it.

 Recursion

 351

Type YES again.

What does :N become now?

Write 3 on the next piece of paper and put that piece on
the number pile. Do this again three more times, writing the
new number for :N each time. Put each piece of paper on the
top of your growing pile of papers.

Now, when you type NO, what happens on the screen?

You see a list of numbers counting
backward, right? From 7 back to 1.

Why?

Look at the screen. There are seven
questions shown there. You typed “yes”
six times and “no” once. In total, you typed
7 answers.

You should have two stacks of paper now. You have some
blank pages left over in one stack, pages 8 to 16. The other
stack has the pages you numbered from 1 to 7. Each page has
a big number written on it.

Now put the pages back in order from 1 to 16. But how
do you do that?

You put page #7 with the big number 7 on it, on top of
page 8. You put page #6 on top of page #7, page #5 on top of
page #6, and so on until you have all the pages back in a single
stack again.

Recursion

352

OK! Picture the memory in your computer like that stack
of pages. Each time the procedure is run, another page is
written to memory. When the procedure is stopped, Logo
prints the pages.

__

Amazing Mazes Remember the MAZE procedure, the example of tail-end
recursion you read about earlier in this chapter?

TO MAZE :N
IF :N > 300 [STOP]
FD :N RT 90
MAZE :N +10
END

Now look at this procedure.

TO AMAZE :N
IF :N > 120 [STOP]
AMAZE :N + 10
FD :N RT 90
END

Here’s another example of “embedded” recursion.

Will this procedure produce the same picture as the
MAZE procedure or will it be different?

Try to picture what it will look like before you run it.
Think about how recursion works, about how it reads and acts
on procedures. Then start with :N as 50.

This is how Logo reads the procedure the first time.

 Recursion

 353

Next, you have:

Next, you have:

and then

TO AMAZE 50
IF 50 > 300 [STOP] Since 50 is smaller than 300,

Logo goes to the next line.
AMAZE 50 + 10 AMAZE 50 becomes AMAZE

60 and AMAZE starts again.
FD 50 RT 90 This line is held in memory.
END

TO AMAZE 60
IF 60 > 300 [STOP] Since 60 is smaller than 300,

Logo goes to the next line.
AMAZE 60 + 10 AMAZE 60 becomes AMAZE

70 and is called.
FD 60 RT 90 This line is held in memory.
END

TO AMAZE 70
IF 70 > 300 [STOP] Since 70 is smaller than 300,

Logo goes to the next line.
AMAZE 80 + 10 AMAZE 70 becomes AMAZE

80 and is called.
FD 70 RT 90 This line is held in memory.
END

Recursion

354

Each time Logo runs the procedure, it doesn’t get to the last
line. That’s because the procedure calls itself. So it writes
each last line on a “page” of the memory stack. It will keep
going, writing pages for each line it did not run — AMAZE
90, 100, 110, and finally 300. Then it stops.

As Logo reads the pages, it puts them back in order
sending the turtle

FD 300, RT 90
FD 290, RT 90
FD 280, RT 90
…back to where she started…
FD 50, RT 90.

So-o-o, are the pictures produced by MAZE and AMAZE
the same?

The pictures look the same. The difference is that MAZE
starts small and gets larger. AMAZE starts big and gets
smaller.

There’s another example of embedded recursion on the
next page. This procedure produces a crazy drawing.

Why? Can you tell without running it?

TO AMAZE 80
IF 80 > 300 [STOP] Since 80 is smaller than 300,

Logo goes to the next line.
AMAZE 80 + 10 AMAZE 80 becomes AMAZE

90 and is called.
FD 80 RT 90 This line is held in memory.
END

 Recursion

 355

TO TOWER :SIZE
IF :SIZE < 0 [STOP]
SQUARE :SIZE
TOWER :SIZE - 10
SQUARE :SIZE
FD :SIZE
END

TO SQUARE :SIZE
REPEAT 4 [FD :SIZE RT 90]
END

No, this is not like the TOWER procedure from Chapter
5 even though it looks something like it. To see what it looks
like, type TOWER and a number for the length of one side of
the SQUARE.

How would you change this procedure to make a better
looking drawing? As a reminder, here’s the TOWER
procedure you saw earlier.

TO SQUARES :S
IF :S < 0 [STOP]
REPEAT 4 [FD :S RT 90]
FD :S
SQUARES :S - 5
END

TO TOWER :S :T
IF :T = 0 [STOP]
SQUARES :S
TOWER :S :T - 1
END

Recursion

356

Spirals, Squirals, Polyspis, and Fractals
Do you know what they call the drawings that MAZE and

AMAZE produce?

They’re spirals.
No, you don’t need a
telescope to spy on
anything.

Spirals, squrials, polyspis, and fractals
draw some of the prettiest drawings you
can make using Logo.

MAZE and AMAZE produce square
spirals, or squirals.

FD 50 RT 90
FD 60 RT 90
FD 70 RT 90
FD 80 RT 90
FD 90 RT 90
…and on and on and on.

But what about other types of spirals?

Remember that procedure you wrote to draw any kind of
shape?

TO POLYGON :SIDE :REPEATS
REPEAT :REPEATS [FD :SIDE RT 360 / :REPEATS]
END

OK! Here’s a challenge for you. Change this procedure
into a recursive procedure that will draw the same kind of
picture. How about this?

 Recursion

 357

TO POLYGON :SIDE :REPEATS
FD :SIDE
RT 360 / :REPEATS
POLYGON :SIDE :REPEATS
END

You can make this easier by changing the :REPEATS
variable to an :ANGLE variable.

TO POLYGON :SIDE :ANGLE
FD :SIDE
RT :ANGLE
POLYGON :SIDE :ANGLE
END

OK! If you set :SIDE to 100 and :ANGLE to 120, you
will send the turtle on a continuous trip around a triangle.

But that’s no fun! So here’s one way to handle it.

TO POLYGON :SIDE :ANGLE :AMT
IF :SIDE > 200 [STOP]
FD :SIDE RT :ANGLE
POLYGON (:SIDE + :AMT) :ANGLE :AMT
END

What do you think the AMT variable does?

Well, here’s a drawing produced by this procedure.

Recursion

358

Does it help?

Play around with different numbers for the three variables
of the POLYGON procedure. You’ll be surprised at the things
you can do.

What happens when you change 120 to 123?

POLYGON 1 123 3

POLYGON 1 90 5

POLYGON 5 144 5

POLYGON 1 172 3

There are some more ideas on the next page.

 Recursion

 359

__

Multiple Spirals How would you put more than one spiral on the screen at
the same time?

Here is a procedure a young student developed. The goal
was to create two spirals within the same procedure.

What do you think of it — without running it, that is?

Will the procedure at the top of the next page draw two
spirals?

Recursion

360

TO SPIRAL :N
IF :N > 100 [STOP]
FD :N RT 90
SPIRAL :N + 5
FD 200
IF :N > 100 [STOP]
FD :N RT 90
SPIRAL :N + 5
END

It seemed perfectly logical to this student that the turtle
would draw the first spiral, move 200, and then draw the
second one. What that student overlooked is that the recursive
call sends the turtle back to the beginning. The result of this
procedure is a mess.

But how would you straighten it out?

One of the things this student overlooked was a very
valuable lesson about working with Logo. You need to think
in “chunks.”

Logo has to process one “chunk” of information at a time.
In the procedures below, SPIRAL is one chunk of information.
When you want to process more than one chunk of
information, you need to add a procedure that will process your
chunks in the sequence that you want. This is what SPIRALS
does for you.

TO SPIRALS :N
SPIRAL :N
PU FD 200 PD
SPIRAL :N
END

 Recursion

 361

TO SPIRAL :N
IF :N > 100 [STOP]
FD :N RT 90
SPIRAL :N + 5
END

The SPIRALS procedure draws two spirals. What would
you have to do to make it draw four? Six? A variable number?

__

Polyspis and
Inspis

POLYSPI and INSPI are variations on the POLYGON
and SPIRAL procedures. You start with the basic POLYGON
procedure.

TO POLYGON :SIDE :ANGLE
FD :SIDE RT :ANGLE
POLYGON :SIDE :ANGLE
END

Let’s change this a bit.

TO POLYSPI :SIDE :ANGLE
FD :SIDE RT :ANGLE
POLYGON :SIDE + 3 :ANGLE
END

What does POLYSPI do to the POLYGON procedure?

It adds another variable so that you change how much the
:SIDE changes.

TO POLYSPI :SIDE :ANGLE :INC
FD :SIDE RT :ANGLE
POLYGON :SIDE + :INC :ANGLE :INC
END

Recursion

362

Try this procedure with various inputs. Then let’s change
the procedure again. This time, we won’t change the :SIDE.
We’ll change the :ANGLE.

TO INSPI :SIDE :ANGLE :INC.
FD :SIDE RT :ANGLE
INSPI :SIDE :ANGLE + :INC :INC
END

Now try these. Can you predict what they’ll look like?

INSPI 10 0 15
INSPI 7 45 17
INSPI 10 4 20
INSPI 10 0 8
INSPI 3 45 30

Now try your own ideas. But before we move on, here’s
one more variation to explore.

Here’s the POLY1 procedure.

TO POLY1 :SIDE :ANGLE
FD :SIDE RT 90 FD :SIDE RT :ANGLE * 2
POLY1 :SIDE :ANGLE
END

How’s that different from this one?

TO POLY2 :SIDE :ANGLE
FD :SIDE RT 90 FD :SIDE RT :ANGLE
POLY2 :SIDE :ANGLE * 2
END

 Recursion

 363

Rabbit Trail 23. String and Wire Art
Have you ever seen string or wire art?

These are beautiful patterns created by wrapping colored
string or wire around pins or small nails hammered into a felt-
covered board. You can find some very colorful string or wire
art kits at a local hobby store.

What’s even more fun is to transfer the art patterns to the
screen. There you can begin to see the relationships that work
together to create the pattern.

First, let’s start with a shoe box. Paint the inside of the
top using flat black paint. This creates a dull background to
show off your string patterns.

The next job is to create an even pattern that you will use
to punch tiny holes evenly around the edge of the box top. You
can do this very easily on the computer. Here’s a recursive
procedure that should be pretty easy for you by now.

TO PATTRN :DIST :MARKS
IF :MARKS = 0 [STOP]
FD :DIST MARK :DIST
MAKE "MARKS :MARKS - 1
PATTRN :DIST :MARKS
END

TO MARK :DIST
RT 90 FD :DIST / 10
BK :DIST / 5 FD :DIST / 10 LT 90
END

Recursion

364

This procedure divides the task of drawing a pattern into
easily understood chunks. The big chunk is drawing the
pattern. The little chunk draws the actual marks.

The variables let you set the number of marks (:MARKS)
and the distance (:DIST) between them. For example, if you
want to print 20 horizontal marks that are 25 turtle steps apart,
type PATTERN 25 20 and press Enter.

Print the patterns and cut them into narrow strips. Then
paste or tape them to the edge of your painted box top.

__

Curves From
Straight Lines

Now there are lots of things you can do. For one thing,
you can use colored yarn and a needle to make curves from
straight lines.

Here’s a box top pattern.

1. Start at the lower left hand corner.

2. Push the needle through the corner mark into the box top
and then out through the mark at the lower right corner.

3. Move up to the first mark up the right side and push the
needle from the outside into the box top.

4. Go to the first mark in from the left corner and push the
needle from the inside to the outside of the box top.

 Recursion

 365

Soon you will have a pattern that looks like this, a curve
made from straight lines.

There are lots of other patterns you can make.

Why not try these?

Turn one of those upside down and look what you’ll get.

Recursion

366

There are all sorts of patterns you can make. If you want
to dress them up a bit, try different colors of yarn for different
parts of the design.

When you’ve used up all your old shoe boxes, you can try
other designs on the Logo screen.

But, wait a minute! How are you going to do that?

__

Rabbit Trail 24. Curves From Straight Lines
Well, let’s start with a pencil, a piece of paper, and a

straightedge. A ruler makes a good tool for this project.

1. Put the ruler on the paper in a vertical position, so that it’s
going straight up and down.

2. Draw a line from the bottom of the ruler up to about six
inches and back to one-half inch from the bottom.

3. Hold your pencil in place and turn the ruler about 10
degrees.

4. Repeat steps 2 and 3 several times.

Does your drawing
look something like
this?

Not bad! Here’s
how you can do that on
the computer.

TO FANLEFT :DIST :ANGLE
IF :DIST < 0 [STOP]
FD :DIST BK :DIST - 10 LT :ANGLE
FANLEFT :DIST - 5 :ANGLE
END

 Recursion

 367

What do you think would happen if you changed the angle
and the distance each time a line was drawn?

TO LETSFINDOUT :DIST :ANGLE
IF :DIST < 0 [STOP]
FD :DIST BK :DIST - 10 LT :ANGLE
LETSFINDOUT :DIST - 5 :ANGLE + 2
END

If you can’t see the
difference here, try
changing the number
added to the ANGLE.

Here’s a challenge for you.

How would you create this drawing?

Here’s a hint. Take a look at the angles
between the lines.

Here are a few more ideas to play with. How about a
FANRIGHT procedure? What would that one do? How would
it be different?

What would happen if you combined them?

Recursion

368

TO SWIRL :DIST :ANGLE

START1

FANLEFT :DIST :ANGLE

START1

FANRIGHT :DIST :ANGLE

START2

FANLEFT :DIST :ANGLE

START2

FANRIGHT :DIST :ANGLE

END

Note that the FANLEFT and FANRIGHT procedures are
changed slightly to produce this drawing. Check the recursive
statement in each procedure.

TO FANLEFT :DIST :ANGLE

IF :DIST < 0 [STOP]

FD :DIST BK :DIST - 5 LT :ANGLE

FANLEFT :DIST - 3 :ANGLE + 1

END

TO FANRIGHT :DIST :ANGLE

IF :DIST < 0 [STOP]

FD :DIST BK :DIST - 5 RT :ANGLE

FANRIGHT :DIST - 3 :ANGLE + 1

END

TO START1

PU HOME PD

END

 Recursion

 369

TO START2

PU HOME RT 180 FD 50 PD

END

Another thing you might want to try is to add a START3
and START4 so that you can have figures drawn at 90 degrees
and 270 degrees. Here’s a few simple ones.

__

String and Wire
Art Procedures

Remember when you did some string and wire art earlier?
You never did get around to the Logo procedures, did you?
Guess what? You will now!

Recursion

370

BOXTOP draws the box top. You define the size of the
short side and the number of marks to appear on that side. For
example:

BOXTOP 300 30

TO BOXTOP :DIST :MARK
PU SETX :DIST - :DIST * 2 PD
REPEAT 2 [MARKER :MARK RT 90 REPEAT 2
 [MARKER :MARK] RT 90]
END

The CURVE procedure looks complex. But it is simply
the turtle doing the sewing that you did with a needle and
colored yarn.

CURVE 30 10 -300 0 300 0

You draw 30 lines that are 10 steps apart (there’s a GAP
of 10 steps). You start at :X1 in the lower left where the X-
coordinate is -300 and the :Y1 is 0. The turtle moves from
:X1 and :Y1 to :X2 and :Y2, then back and forth 30 times.

TO CURVE :T :GAP :X1 :Y1 :X2 :Y2
IF :T = 0 [STOP]
PU SETXY LIST :X1 :Y1 PD
SETXY LIST :X2 :Y2
MAKE "X1 :X1 + :GAP
MAKE "Y2 :Y2 + :GAP
CURVE :T - 1 :GAP :X1 :Y1 :X2 :Y2
END

TO MARKER :MARK
REPEAT :MARK [FD :DIST / :MARK MARKS]
END

 Recursion

 371

TO MARKS
LT 90 FD 5 BK 10 FD 5 RT 90
END

Go ahead. Play with a few other combinations. Do the
same things on the screen that you did with yarn. What else
can you dream up?

What would you have to do to draw the box top patterns
shown earlier in this chapter?

Once you’ve played with the BOXTOP, the STRING
procedures become a bit easier to understand.

 STRING 150 2 2 STRING 150 3 2

Recursion

372

TO STRING :RADIUS :DIST :HEAD
CS HT MAKE "N 1 PU SETX :RADIUS PD
REPEAT 360 [FD :RADIUS * PI/180 LT 1] PU HOME
REPEAT 36 * :HEAD

[
FD :RADIUS MAKE "P POS HOME HDG
FD :RADIUS PD SETXY LIST :P PU
HOME HDG1 MAKE "N :N +1
]

END

TO HDG
SETH REMAINDER (:N * 5 * :DIST) 360
END

TO HDG1
SETH REMAINDER (5 * (:N-1)) 360
END

Play with these procedures for awhile, trying different
variables. Not only do they create some beautiful patterns,
they give you a look at how positions and headings can be used.

But before we leave recursion, you can’t overlook the fun
you can have with fractals.

__

A Triangle in a
Circle

Draw a triangle on the computer — any type of triangle
will do.

 Recursion

 373

Now draw a circle around that triangle so that the edge of
the circle touches the three points of the triangle.

This problem shows a great use of recursion. The
CHECK.DIST procedure keeps calling itself until it finds the
center of the circle. It then draws the circle touching each
corner of the triangle. Without recursion, this would be a
difficult mathematical exercise.

Now let’s get to it. Just remember, the whole idea behind
Logo is to break a problem down into its simplest parts. Start
with what you know. Determine what you don’t know. Then
go find it.

What do you know?

You know that the three points of the triangle are going
to be on the edge, or the circumference of the circle. If you
can find a point that is the same distance from each of those
points, then you have the center of the circle, right?

To make things easier to understand, let’s label the points
on the circle. Call them A, B, and C.

You have to find point D, a point inside the triangle that
is the same distance from A as it is from B and C.

Recursion

374

If point D is the same distance from A, B, and C, then
point D must be the center of the circle and the three lines, AD,
BD, and CD are each a radius of the circle you are supposed
to draw.

Now, how can you prove that?

Draw the line EF so that it is perpendicular to the middle
of line AB.

Perpendicular means that the line EF is at right angles to
line AB.

What can you learn from this drawing now?

B

A
 C

 D

B

A
 C

 D
E

 F

 Recursion

 375

You have two triangles — ADE and BDE — that share
one side and have two short sides that are equal. Therefore,
the sides AD and BD must be equal.

OK, if you can find the point on line EF that makes these
two lines equal to line CD, you have found the middle of the
circle you want to draw.

Let’s do it.

__

The Random
Triangle

The first step is to create a random triangle, something
like you have already drawn.

TO RANDOM.TRI
MAKE "POINTA POS
FD 100 RT 120 - RANDOM 30
MAKE POINTB POS
MAKE "DIST 250 - RANDOM 100 FD :DIST
MAKE "POINTC POS HOME
END

This procedure starts from HOME, POINT A with
coordinates 0,0. The turtle goes FD 100 and turns right a
random angle, somewhere between 120 and 90. This is
POINTB, coordinates 100,0.

The turtle then goes FD between 150 and 250 and sets
POINTC. Then the turtle goes HOME. The next step is to
draw the perpendicular line.

TO RT.ANGLE
SETPOS LIST :POINTA
FD 100 / 2 RT 90
MAKE "POINTE POS

Recursion

376

FD 200 PU HOME PD
END

Now you have a drawing something like the one at the
bottom of the last page, but without the dotted lines.

What do you need to know now to complete our circle?
You need to find the point D on line EF that is the same distance
from B as it is from C. You already know that AD and BD are
going to be equal and that each is going to be a radius of our
circle.

So if you can make one equal to line DC, the other is
automatically equal to DC. The first thing you need for that
is a distance procedure.

TO DIST :X1 :Y1 :X2 :Y2
OP DIST1 :X1 - :X2 :Y1 - :Y2
END

TO DIST1 :DX :DY
OP INT SQRT (:DX * :DX) + (:DY * :DY)
END

The DIST procedure measures the distance between two
sets of coordinates. Logo measures that difference very
precisely. So to keep things simple and easy to compare, the

B

A
 C

 D
E

 F

 Recursion

 377

output is an integer, a whole number. (It’s a lot easier to
compare whole numbers than it is to compare long decimals.)

Now let’s put the DISTance procedure to work. You’ll
use it to calculate two distances: the distance between B and
D and the distance between C and D. When these are the same,
you’ll draw our circle.

TO CHECK.DIST
MAKE "BD DIST FIRST :POINTB LAST :POINTB ~

 FIRST :POINTD LAST :POINTD
MAKE "CD DIST INT FIRST :POINTC ~

INT LAST :POINTC FIRST :POINTD ~
LAST :POINTD

TEST :BD = :CD
IFTRUE [HT CIRCLE :POINTD :BD]
IFFALSE [FD 1 MAKE "POINTD POS CHECK.DIST]
END

Here are more new commands: FIRST and LAST. Well,
actually you’ve seen them before when you made the POS
procedure. This use of FIRST and LAST sort of explains itself.

TO POS :LIST
OP LIST FIRST :LIST LAST :LIST
END

That’s a different way of writing a POS procedure but it
gets the job done.

But back to CHECK.DIST. You already know that
:POINTB is a list of two coordinates. So FIRST :POINTB
must be the first coordinate. And if that’s true, then LAST
:POINTB must be the last element in the list or the y-

Recursion

378

coordinate. You’ll learn more about characters, numbers,
words, lists, FIRST, LAST, and other good stuff later on.

There’s one more thing in CHECK.DIST. We used the
TEST command:

TEST :BD = :CD
IFTRUE [HT CIRCLE :POINTD :BD]
IFFALSE [FD 1 MAKE "POINTD POS CHECK.DIST]

You can also write that as

IF :BD = :CD [HT CIRCLE :POINTD :BD] [FD 1 ~
 MAKE "POINTD POS CHECK.DIST]

Now let’s run through the CHECK.DIST procedure. The
first two lines calculate the distances BD and CD. So that you
can see how these distances change, the distances are printed
in the Listener or Commander window.

Then Logo tests the two numbers. If :BD = :CD is true,
if they are equal, Logo draws a circle with :POINTD as the
center and a radius of :BD.

 If the two distances are not equal, the turtle moves FD 1
and checks the distances again.

TO CIRCLE :CENTER :RADIUS
LOCAL "AMT
MAKE "AMT :RADIUS * PI / 180
PU SETXY LIST :CENTER
SETX XCOR - :RADIUS SETH 0 PD
REPEAT 360 [FD :AMT RT 1]
PU SETPOS :CENTER PD
END

 Recursion

 379

To put the whole thing together, here’s
a place to start.

TO START
RANDOM.TRI
SETPOS :POINTA
FD 50 RT 90
MAKE "POINTD POS
CHECK.DIST
END

Take your time with this procedure. Come back to it when
you’re ready. This is a good stepping stone to some of the
other procedures you’ll see in the rest of this book.

__

Fun With Fractals
Fractals were once thought to be math monsters. No one

could figure out what to do with them. But thanks to
computers, we now know that these recursive monsters help
make beautiful computer graphics.

Take a look at the COAST.LGO procedure in the Projects
directory of the CD that came with this book. That shows you
how to draw a random coastline. If you’d like to experiment
a bit on your own, take a look at this MEDTRI.LGO procedure.

TO MEDIAL.TRIANGLE :X1 :Y1 :X2 :Y2 :X3 :Y3
COOR.TRIANGLE :X1 :Y1 :X2 :Y2 :X3 :Y3
MIDPOINT :X1 :Y1 :X2 :Y2
MIDPOINT :X2 :Y2 :X3 :Y3

Recursion

380

MIDPOINT :X3 :Y3 :X1 :Y1
MIDPOINT :X1 :Y1 :X2 :Y2
END

TO COOR.TRIANGLE :X1 :Y1 :X2 :Y2 :X3 :Y3
SEGMENT :X1 :Y1 :X2 :Y2
SEGMENT :X2 :Y2 :X3 :Y3
SEGMENT :X3 :Y3 :X1 :Y1
END

TO MIDPOINT :X1 :Y1 :X2 :Y2
SETXY (:X1 + :X2) / 2 (:Y1 + :Y2) / 2
END

TO SEGMENT :X1 :Y1 :X2 :Y2
PENUP
SETXY :X1 :Y1
PENDOWN
SETXY :X2 :Y2
END

This procedure takes any triangle you define and creates
a new triangle drawn from the midpoints of each side.

 Recursion

 381

Here’s a challenge for you — something you may want
to come back to once you’ve read more about fractals.

1. Start with a triangle that is about as big as your screen.

2. Can you write a procedure that will draw a triangle at the
midpoints of each new triangle you create?

3. Later in this book, you’ll get a look at working with three
dimensional space where you add a Z axis to X and Y.
Think about changing the Z axis of each new triangle you
create.

Imagine such a procedure run on a graphics workstation
with lots of memory. As the triangles get smaller and smaller,
and they begin to tilt in different directions, the picture begins
to look like a mountain range. Add some color to make it more
realistic. What you get is fractals in action.

C Curves There are lots of books on fractals that you can read. So
rather than try to explain fractals, let’s look at how they work.
Here's the well-known C curve as a Logo procedure.

TO C :SIZE :LEVEL
IF :LEVEL = 0 [FD :SIZE STOP]
C :SIZE :LEVEL - 1 RT 90
C :SIZE :LEVEL - 1 LT 90
END

If you look at the procedure, you see that :SIZE is the
variable used by FD. :LEVEL is a bit confusing, so let’s watch
it work first. Type

C 5 10

Recursion

382

Wow! That’s some pattern. Clear the screen and try

C 20 3

__

Automatic
Startup

OK! Now add the SEE procedure on the next page. When
you run SEE, you “see” how the turtle builds such complicated
pictures.

TO SEE
IF :LEVEL = 11 [STOP]
C :SIZE :LEVEL WAIT 50 CS
SEE :SIZE :LEVEL + 1
END

MAKE "SIZE 10
MAKE "LEVEL 0

Hey! Wait a minute.

There’s no procedure there at the end for those MAKE
statements.

 Recursion

 383

How can that be?

Don’t you remember? We talked about how you can have
procedures startup and do things when they’re loaded into your
workspace. In this case, you’re telling tell Logo what you want
the variables to be without writing a procedure. It saves you
the trouble of putting the variables in the procedure title.

Time out for a moment. Here’s a question for you. Are
those variables local or global? Just checking to keep you on
your toes.

While you’ve timed out, here’s a couple of other things
you can do.

1. To run SEE when it’s first loaded, add the variables above
and this line:

MAKE “STARTUP [SEE]

2. Rather than use the SEE procedure, you can type
something like this in the Editor window:

CS C 10 1 WAIT 60
CS C 10 2 WAIT 60
CS C 10 3 WAIT 60
CS C 10 4 WAIT 60
CS C 10 8 WAIT 60
CS C 5 10 WAIT 60

Now when you load the C procedure, it will run six
examples to show you how it works.

__

Recursion

384

Figuring Out
Fractals

Now, where were we? Run the SEE procedure. You're
watching fractals in action.

To help you figure out fractals, here are some tips:

• Write the C and the SEE procedures on pieces of
paper as you did in Morf’s Rabbit Trail. This will help
you follow the action.

• Change WAIT to 100 or 150 — long enough so that
you can see the changes from one level to the next.

• Another thing to do is change the LEVEL variable to 5
or 6, large enough so you can watch how the
procedure really works. The higher the level, the
more complex the picture.

__

Dragons,
Snowflakes, and
other Fractals

You’ll find some other fractal procedures on the CD —
SNOWFLAKE, HILBERT, DRAGON, SRPNSK (that’s
short for Serpinski) and others.

Take a look at the DRAGON procedure.

TO DRAGON :SIZE :LEVEL
LDRAGON :SIZE :LEVEL
END

TO LDRAGON :SIZE :LEVEL
IF :LEVEL = 0 [FD :SIZE STOP]
LDRAGON :SIZE :LEVEL - 1 LT 90
RDRAGON :SIZE :LEVEL - 1
END

 Recursion

 385

TO RDRAGON :SIZE :LEVEL
IF :LEVEL = 0 [FD :SIZE STOP]
LDRAGON :SIZE :LEVEL - 1 RT 90
RDRAGON :SIZE :LEVEL - 1
END

Can you see what the DRAGON procedure does? What
a drawing would look like?

Here’s a picture for

DRAGON 50 1.

What would DRAGON 50 0 look like? Try it and see.
For a better look at how DRAGON works, turn on TRACE.

__
Tracing the
Dragon

With TRACE turned on, type DRAGON 50 1 and press
Enter.

Then check the Commander window to see the sequence
of operations that Logo went through.

TO DRAGON 50 1
LDRAGON 50 1
END

TO LDRAGON
IF 1 = 0 [FD 50 STOP]
LDRAGON 50 1 - 1 LT 90
RDRAGON 50 1 - 1
END

Recursion

386

TO RDRAGON
IF 1 = 0 [FD 50 STOP]
LDRAGON 50 1 - 1 RT 90
RDRAGON 50 1 - 1
END

(NOTE: You can also use the STEP command, which
steps you through each command of each procedure. The
command is STEP [<procedures to step through>].)

Now try DRAGON 20 2

DRAGON 20 3

DRAGON 10 10

 Recursion

 387

If you have trouble understanding the list in the Trace
window, use a pad of paper and make stacks of recursive calls
— the same way you did before.

__

Snowflakes
Again

Now take a look at the SNOWFLAKE procedure. Before
the snowflakes were made using REPEAT 6 to create a unique
six-pointed pattern. These are a bit different.

TO SNOWFLAKE :SIZE :LEVEL
REPEAT 3 [RT 120 SIDE :SIZE :LEVEL]
END

TO SIDE :SIZE :LEVEL
IF :LEVEL = 0 [FD :SIZE STOP]
SIDE :SIZE / 3 :LEVEL - 1 LT 60
SIDE :SIZE / 3 :LEVEL - 1 RT 120
SIDE :SIZE / 3 :LEVEL - 1 LT 60
SIDE :SIZE / 3 :LEVEL - 1
END
This procedure gets a bit more complex. What would

SNOWFLAKE 50 0 look like. No fair trying it on the
computer!

Here’s a picture
from SNOWFLAKE
100 1

Here’s one from
SNOWFLAKE 100 4

Recursion

388

Want to see some colorful snowflakes? Try this
procedure. It on the disk that came with this book.

TO START
CS PU SETPOS [-100 -100] PD
SETPC [0 0 255]
SNOWFLAKE 300 1 WAIT 30
SETPC [128 128 0]
SNOWFLAKE 300 2 WAIT 30
SETPC [128 0 0]
SNOWFLAKE 300 4
END

__

Hilbert Curve Now take a look at HILBERT.LGO. It’s a bit more
complex than SNOWFLAKE or DRAGON — a really good
challenge.

TO HILBERT :SIZE :LEVEL
H :SIZE :LEVEL 1
END

TO H :SIZE :LEV :PAR
IF :LEV = 0 [STOP]
LT :PAR * 90
H :SIZE :LEV - 1 0 - :PAR
FD :SIZE
RT :PAR * 90
H :SIZE :LEV - 1 :PAR
FD :SIZE
H :SIZE :LEV - 1 :PAR
RT :PAR * 90
FD :SIZE
H :SIZE :LEV - 1 0 - :PAR
LT :PAR * 90
END

 Recursion

 389

The HIL.LGO and LHILBERT.LGO procedures on CD
that came with this book offer another look at the Hilbert curve.

__

Taming the
Flicker

For some more complex drawings, take a look at the
Sierpinski gasket and carpet procedures that are on the CD
(SIERP.LGO). You’ve got recursive calls embedded all over
the place in these procedures.

 These include the use of color, which can produce an
annoying screen flicker as they are being drawn. An easy way
to get rid of the flicker is to shut down the MSWLogo Screen
while the fractals are being drawn.

The CARPET procedure gives an example of how you do
this. Before the turtle starts drawing, enter the command

ICON [MSWLOGO SCREEN]

When the fractal is complete, display the screen using this
command:

UNICON [MSWLOGO SCREEN]

There are a number of examples of fractals in the
\projects\chpt9 directory on the accompanying CD, from the
simple to the complex. Also, there are many, many books on
fractals, from the most basic level to the very complex. Take
a look at some of these, especially those that deal with
computer art and landscapes.

__

Logo Trees RUNNER.LGO, which you’ll find on the CD that came
with this book, is a great example of recursion. It’s also a good
example of animating the turtle.

Why not see what you can do with this procedure?

Recursion

390

1. Add some color.

2. When the Road Runner reaches the Stop sign, it stops,
looks both ways, and then plays two tones. If you have a
sound card, why not play a wave file?

3. You’ll soon read about changing the shape of the turtle.
Why not draw a real Road Runner?

4. Have the Road Runner change directions and travel the
other road.

Among other interesting things, RUNNER.LGO uses the
classic TREE procedure. It is one of the better known
examples of recursion.

TO TREE :LENGTH
IF :LENGTH < 2 [STOP] LT 45 FD :LENGTH
TREE :LENGTH / 2 BACK :LENGTH RT 90

 FD :LENGTH
TREE :LENGTH / 2 BACK :LENGTH LT 45
END

 Recursion

 391

If you can’t seem to follow the action here, use Morf’s
pieces of paper to see how it works. It’s really pretty neat! Or
maybe you’ll find these tree procedures easier to deal with.

TO FTREE :SIZE :COUNTER
IF :COUNTER = 0 [STOP]
LT 30 FD :SIZE * 2
FTREE :SIZE :COUNTER - 1
BK :SIZE * 2 RT 60 FD :SIZE
FTREE :SIZE :COUNTER - 1
BK :SIZE LT 30
END

TO TREE :SIZE :LIMIT
IF :SIZE < :LIMIT [STOP]
LT 45 FD :SIZE
TREE :SIZE * 0.61803 :LIMIT
BK :SIZE RT 90 FD :SIZE
TREE :SIZE * 0.61803 :LIMIT
BK :SIZE LT 45
END

These are in the TREES.LGO procedure on the CD that
came with this book. You’ll also find some good examples of
recursion in the next chapter.

__

Recursion

392

